It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Utilization of heterosis has greatly improved the productivity of many crops worldwide. Understanding the potential molecular mechanism about how hybridization produces superior yield in upland cotton is critical for efficient breeding programs.
Results
In this study, high, medium, and low hybrids varying in the level of yield heterosis were screened based on field experimentation of different years and locations. Phenotypically, high hybrid produced a mean of 14% more seed cotton yield than its better parent. Whole-genome RNA sequencing of these hybrids and their four inbred parents was performed using different tissues of the squaring stage. Comparative transcriptomic differences in each hybrid parent triad revealed a higher percentage of differentially expressed genes (DEGs) in each tissue. Expression level dominance analysis identified majority of hybrids DEGs were biased towards parent like expressions. An array of DEGs involved in ATP and protein binding, membrane, cell wall, mitochondrion, and protein phosphorylation had more functional annotations in hybrids. Sugar metabolic and plant hormone signal transduction pathways were most enriched in each hybrid. Further, these two pathways had most mapped DEGs on known seed cotton yield QTLs. Integration of transcriptome, QTLs, and gene co-expression network analysis discovered genes Gh_A03G1024, Gh_D08G1440, Gh_A08G2210, Gh_A12G2183, Gh_D07G1312, Gh_D08G1467, Gh_A03G0889, Gh_A08G2199, and Gh_D05G0202 displayed a complex regulatory network of many interconnected genes. qRT-PCR of these DEGs was performed to ensure the accuracy of RNA-Seq data.
Conclusions
Through genome-wide comparative transcriptome analysis, the current study identified nine key genes and pathways associated with biological process of yield heterosis in upland cotton. Our results and data resources provide novel insights and will be useful for dissecting the molecular mechanism of yield heterosis in cotton.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer