Full Text

Turn on search term navigation

© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The relationship between the unique characteristics of nanodiamonds (NDs) and the fluorescence properties of nitrogen-vacancy (NV) centers has lead to a tool with quantum sensing capabilities and nanometric spatial resolution; this tool is able to operate in a wide range of temperatures and pressures and in harsh chemical conditions. For the development of devices based on NDs, a great effort has been invested in researching cheap and easily scalable synthesis techniques for NDs and NV-NDs. In this review, we discuss the common fluorescent NDs synthesis techniques as well as the laser-assisted production methods. Then, we report recent results regarding the applications of fluorescent NDs, focusing in particular on sensing of the environmental parameters as well as in catalysis. Finally, we underline that the highly non-equilibrium processes occurring in the interactions of laser-materials in controlled laboratory conditions for NDs synthesis present unique opportunities for investigation of the phenomena occurring under extreme thermodynamic conditions in planetary cores or under warm dense matter conditions.

Details

Title
Nanodiamonds: Synthesis and Application in Sensing, Catalysis, and the Possible Connection with Some Processes Occurring in Space
Author
Basso, Luca  VIAFID ORCID Logo  ; Cazzanelli, Massimo  VIAFID ORCID Logo  ; Orlandi, Michele  VIAFID ORCID Logo  ; Miotello, Antonio
First page
4094
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2414904680
Copyright
© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.