Abstract

Advances in complex oxide heteroepitaxy have highlighted the enormous potential of utilizing strain engineering via lattice mismatch to control ferroelectricity in thin-film heterostructures. This approach, however, lacks the ability to produce large and continuously variable strain states, thus limiting the potential for designing and tuning the desired properties of ferroelectric films. Here, we observe and explore dynamic strain-induced ferroelectricity in SrTiO3 by laminating freestanding oxide films onto a stretchable polymer substrate. Using a combination of scanning probe microscopy, optical second harmonic generation measurements, and atomistic modeling, we demonstrate robust room-temperature ferroelectricity in SrTiO3 with 2.0% uniaxial tensile strain, corroborated by the notable features of 180° ferroelectric domains and an extrapolated transition temperature of 400 K. Our work reveals the enormous potential of employing oxide membranes to create and enhance ferroelectricity in environmentally benign lead-free oxides, which hold great promise for applications ranging from non-volatile memories and microwave electronics.

Previous approach lacks the ability to produce large and continuously tunable strain states due to the limited number of available substrates. Here, the authors demonstrate strain-induced ferroelectricity in SrTiO3 membranes by laminating freestanding SrTiO3 films onto a stretchable polymer.

Details

Title
Strain-induced room-temperature ferroelectricity in SrTiO3 membranes
Author
Xu Ruijuan 1   VIAFID ORCID Logo  ; Huang, Jiawei 2 ; Barnard, Edward S 3   VIAFID ORCID Logo  ; Hong, Seung Sae 1 ; Singh Prastuti 1 ; Wong, Ed K 3 ; Jansen Thies 4 ; Harbola Varun 5 ; Xiao, Jun 6   VIAFID ORCID Logo  ; Wang Bai Yang 5 ; Crossley, Sam 1 ; Lu, Di 7 ; Liu, Shi 8   VIAFID ORCID Logo  ; Hwang, Harold Y 1 

 Stanford University, Department of Applied Physics, Stanford, USA (GRID:grid.168010.e) (ISNI:0000000419368956); SLAC National Accelerator Laboratory, Stanford Institute for Materials and Energy Sciences, Menlo Park, USA (GRID:grid.445003.6) (ISNI:0000 0001 0725 7771) 
 Westlake University, School of Science, Hangzhou, China (GRID:grid.445003.6) 
 Lawrence Berkeley National Laboratory, The Molecular Foundry, Berkeley, USA (GRID:grid.184769.5) (ISNI:0000 0001 2231 4551) 
 Stanford University, Department of Applied Physics, Stanford, USA (GRID:grid.168010.e) (ISNI:0000000419368956) 
 SLAC National Accelerator Laboratory, Stanford Institute for Materials and Energy Sciences, Menlo Park, USA (GRID:grid.445003.6) (ISNI:0000 0001 0725 7771); Stanford University, Department of Physics, Stanford, USA (GRID:grid.168010.e) (ISNI:0000000419368956) 
 SLAC National Accelerator Laboratory, Stanford Institute for Materials and Energy Sciences, Menlo Park, USA (GRID:grid.445003.6) (ISNI:0000 0001 0725 7771); Stanford University, Department of Materials Science and Engineering, Stanford, USA (GRID:grid.168010.e) (ISNI:0000000419368956) 
 Stanford University, Department of Physics, Stanford, USA (GRID:grid.168010.e) (ISNI:0000000419368956) 
 Westlake University, School of Science, Hangzhou, China (GRID:grid.168010.e) 
Publication year
2020
Publication date
2020
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2414909926
Copyright
© The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.