Full text

Turn on search term navigation

© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Predicting and mapping fire susceptibility is a top research priority in fire-prone forests worldwide. This study evaluates the abilities of the Bayes Network (BN), Naïve Bayes (NB), Decision Tree (DT), and Multivariate Logistic Regression (MLP) machine learning methods for the prediction and mapping fire susceptibility across the Pu Mat National Park, Nghe An Province, Vietnam. The modeling methodology was formulated based on processing the information from the 57 historical fires and a set of nine spatially explicit explanatory variables, namely elevation, slope degree, aspect, average annual temperate, drought index, river density, land cover, and distance from roads and residential areas. Using the area under the receiver operating characteristic curve (AUC) and seven other performance metrics, the models were validated in terms of their abilities to elucidate the general fire behaviors in the Pu Mat National Park and to predict future fires. Despite a few differences between the AUC values, the BN model with an AUC value of 0.96 was dominant over the other models in predicting future fires. The second best was the DT model (AUC = 0.94), followed by the NB (AUC = 0.939), and MLR (AUC = 0.937) models. Our robust analysis demonstrated that these models are sufficiently robust in response to the training and validation datasets change. Further, the results revealed that moderate to high levels of fire susceptibilities are associated with ~19% of the Pu Mat National Park where human activities are numerous. This study and the resultant susceptibility maps provide a basis for developing more efficient fire-fighting strategies and reorganizing policies in favor of sustainable management of forest resources.

Details

Title
Performance Evaluation of Machine Learning Methods for Forest Fire Modeling and Prediction
Author
Binh Thai Pham  VIAFID ORCID Logo  ; Jaafari, Abolfazl  VIAFID ORCID Logo  ; Avand, Mohammadtaghi  VIAFID ORCID Logo  ; Al-Ansari, Nadhir  VIAFID ORCID Logo  ; Tran Dinh Du; Hoang Phan Hai Yen; Tran Van Phong  VIAFID ORCID Logo  ; Nguyen, Duy Huu; Hiep Van Le; Mafi-Gholami, Davood; Prakash, Indra; Hoang Thi Thuy; Tran Thi Tuyen
First page
1022
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
20738994
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2415194235
Copyright
© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.