Abstract

Epitaxial films may be released from growth substrates and transferred to structurally and chemically incompatible substrates, but epitaxial films of transition metal perovskite oxides have not been transferred to electroactive substrates for voltage control of their myriad functional properties. Here we demonstrate good strain transmission at the incoherent interface between a strain-released film of epitaxially grown ferromagnetic La0.7Sr0.3MnO3 and an electroactive substrate of ferroelectric 0.68Pb(Mg1/3Nb2/3)O3-0.32PbTiO3 in a different crystallographic orientation. Our strain-mediated magnetoelectric coupling compares well with respect to epitaxial heterostructures, where the epitaxy responsible for strong coupling can degrade film magnetization via strain and dislocations. Moreover, the electrical switching of magnetic anisotropy is repeatable and non-volatile. High-resolution magnetic vector maps reveal that micromagnetic behaviour is governed by electrically controlled strain and cracks in the film. Our demonstration should inspire others to control the physical/chemical properties in strain-released epitaxial oxide films by using electroactive substrates to impart strain via non-epitaxial interfaces.

Key properties of transition metal perovskite oxides are degraded after epitaxial growth on ferroelectric substrates due to lattice-mismatch strain. Here, the authors use epitaxial lift-off and transfer to overcome this problem and demonstrate electric field control of a bulk-like magnetization.

Details

Title
Large magnetoelectric coupling in multiferroic oxide heterostructures assembled via epitaxial lift-off
Author
Pesquera, D 1   VIAFID ORCID Logo  ; Khestanova, E 2   VIAFID ORCID Logo  ; Ghidini, M 3   VIAFID ORCID Logo  ; Zhang, S 4   VIAFID ORCID Logo  ; Rooney, A P 5   VIAFID ORCID Logo  ; Maccherozzi, F 6 ; Riego, P 7 ; Farokhipoor, S 8 ; Kim, J 1 ; Moya, X 1   VIAFID ORCID Logo  ; Vickers, M E 1 ; Stelmashenko, N A 1   VIAFID ORCID Logo  ; Haigh, S J 5   VIAFID ORCID Logo  ; Dhesi, S S 6   VIAFID ORCID Logo  ; Mathur, N D 1   VIAFID ORCID Logo 

 University of Cambridge, Department of Materials Science, Cambridge, UK (GRID:grid.5335.0) (ISNI:0000000121885934) 
 ITMO University, Saint Petersburg, Russia (GRID:grid.35915.3b) (ISNI:0000 0001 0413 4629) 
 University of Cambridge, Department of Materials Science, Cambridge, UK (GRID:grid.5335.0) (ISNI:0000000121885934); University of Parma, Department of Mathematics, Physics and Computer Science, Parma, Italy (GRID:grid.10383.39) (ISNI:0000 0004 1758 0937); Diamond Light Source, Chilton, Didcot, Oxfordshire, UK (GRID:grid.18785.33) (ISNI:0000 0004 1764 0696) 
 University of Cambridge, Department of Materials Science, Cambridge, UK (GRID:grid.5335.0) (ISNI:0000000121885934); National University of Defense Technology, College of Science, Changsha, China (GRID:grid.412110.7) (ISNI:0000 0000 9548 2110) 
 University of Manchester, School of Materials, Manchester, UK (GRID:grid.5379.8) (ISNI:0000000121662407) 
 Diamond Light Source, Chilton, Didcot, Oxfordshire, UK (GRID:grid.18785.33) (ISNI:0000 0004 1764 0696) 
 University of Cambridge, Department of Materials Science, Cambridge, UK (GRID:grid.5335.0) (ISNI:0000000121885934); CIC nanoGUNE, Donostia-San Sebastian, Spain (GRID:grid.424265.3) (ISNI:0000 0004 1761 1166); University of the Basque Country, UPV/EHU, Department of Condensed Matter Physics, Bilbao, Spain (GRID:grid.11480.3c) (ISNI:0000000121671098) 
 University of Groningen, Zernike Institute for Advanced Materials, Groningen, The Netherlands (GRID:grid.4830.f) (ISNI:0000 0004 0407 1981) 
Publication year
2020
Publication date
2020
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2416299339
Copyright
© The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.