It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
It is classically well perceived that cathode–air interfacial reactions, often instantaneous and thermodynamic non-equilibrium, will lead to the formation of interfacial layers, which subsequently, often vitally, control the behaviour and performance of batteries. However, understanding of the nature of cathode–air interfacial reactions remain elusive. Here, using atomic-resolution, time-resolved in-situ environmental transmission electron microscopy and atomistic simulation, we reveal that the cathode–water interfacial reactions can lead to the surface passivation, where the resultant conformal LiOH layers present a critical thickness beyond which the otherwise sustained interfacial reactions are arrested. We rationalize that the passivation behavior is dictated by the Li+-water interaction driven Li-ion de-intercalation, rather than a direct cathode–gas chemical reaction. Further, we show that a thin disordered rocksalt layer formed on the cathode surface can effectively mitigate the surface degradation by suppressing chemical delithiation. The established passivation paradigm opens new venues for the development of novel high-energy and high-stability cathodes.
Environmentally triggered degradation at the cathode–air interface is dictated by Li-ion de-intercalation caused by Li+-water interactions. Here, thin disordered rocksalt surface layers are reported to suppress chemical delithiation, facilitating development of high energy and stability cathodes.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details






1 Pacific Northwest National Laboratory, Environmental Molecular Sciences Laboratory, Richland, USA (GRID:grid.451303.0) (ISNI:0000 0001 2218 3491)
2 University of Pittsburgh, Department of Mechanical Engineering and Materials Science, Pittsburgh, USA (GRID:grid.21925.3d) (ISNI:0000 0004 1936 9000)
3 Pacific Northwest National Laboratory, Energy and Environmental Directorate, Richland, USA (GRID:grid.451303.0) (ISNI:0000 0001 2218 3491)
4 Lawrence Berkeley National Laboratory, Energy Storage and Distributed Resources Division, Berkeley, USA (GRID:grid.184769.5) (ISNI:0000 0001 2231 4551)