Full text

Turn on search term navigation

© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

High toughness with self-healing ability has become the ultimate goal in materials research. Herein, thermoplastic polyurethane (TPU) was linked via host-guest (HG) interactions to increase its mechanical properties and self-healing ability. TPU linked via HG interactions was prepared by the step-growth bulk polymerization of hexamethylene diisocyanate (HDI), tetraethylene glycol (TEG), and HG interactions between permethylated amino βCD (PMeAmβCD) and adamantane amine (AdAm). TPU linked with 10 mol% of HG interactions (HG(10)) showed the highest rupture stress and fracture energy (GF) of 11 MPa and 25 MJ·m−3, which are almost 40-fold and 1500-fold, respectively, higher than those of non-functionalized TEG-based TPU (PU). Additionally, damaged HG(10) shows 87% recovery after heated for 7 min at 80 °C, and completely cut HG(10) shows 80% recovery after 60 min of reattachment at same temperature. The HG interactions in TPU are an important factor in stress dispersion, increasing both its mechanical and self-healing properties. The TPU linked via HG interactions has great promise for use in industrial materials in the near future.

Details

Title
Self-Healing Thermoplastic Polyurethane Linked via Host-Guest Interactions
Author
Jin, Changming; Sinawang, Garry; Osaki, Motofumi  VIAFID ORCID Logo  ; Zheng, Yongtai; Yamaguchi, Hiroyasu  VIAFID ORCID Logo  ; Harada, Akira; Takashima, Yoshinori  VIAFID ORCID Logo 
First page
1393
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
20734360
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2417729494
Copyright
© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.