Abstract

Fine organic suspended sediments (refractory detritus) play an important role in the underwater light attenuation of large shallow lakes with a peat origin and a eutrophication history. Wind driven resuspension of this material, its flocculation in the water column and the settlement of the formed flocs are the main processes governing the dynamics of this material. For restoration of the macrophyte community in such lakes, reduction of this refractory detritus to improve underwater light climate is the key process when eutrophication reduction measures alone are not effective enough. The shallow Lake Loosdrecht (The Netherlands) was used as case study to illustrate the effects of artificially created deepenings on suspended matter concentrations and the consequences for the underwater light climate. Suspended sediment balances were created for the current situation and the situation with deepenings. Field measurements were taken to quantify various processes and results of the calculations from the suspended sediment balances were used to quantify the effects on light climate and potential habitat for macrophytes. These calculations show that creating deepenings (three sections with a total surface area of 120 ha and a depth of 12 m on a 10% section of the lake) decreases the concentration of organic detritus by 25% and decreases attenuation coefficients from 2.5 m-1 to 2.2 m-1. P-load reductions affecting chlorophyll-a levels lead to a change of attenuation coefficients from 2.5 m-1 to 2.0 m-1. The combination of deepenings with P-load reduction measures gives the most optimal result and leads to a predicted attenuation coefficient of 1.6 m-1. These improvements of the underwater light climate are a first step to the recovery of the submerged macrophyte community.

Details

Title
Local deepening of large shallow peat lakes: a measure to improve their ecological status
Author
PENNING, Willemijntje E; UITTENBOGAARD, Rob; OUBOTER, Maarten; Ellen VAN DONK
Pages
126-137
Section
Original Articles
Publication year
2010
Publication date
Feb 2010
Publisher
PAGEPress Publications
ISSN
11295767
e-ISSN
17238633
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2417749646
Copyright
© 2010. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.