Full text

Turn on search term navigation

© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In this paper, the eight schemes for aircraft wireless sensor networks are investigated, which are single-hop array beamforming schemes (including analog beamforming (ABF), and digital beamforming (DBF)), non-cooperative schemes (including single-hop and multi-hop schemes), cooperative schemes (including amplify and forward (AF), decode and forward (DF)), and incremental cooperative schemes (incremental decode and forward (IDF), and incremental amplify and forward (IAF)). To set up the aircraft wireless communication environment, we design the aircraft channel model by referring to the experimental parameters of the ITU (International Telecommunication Union)-R M.2283, which is composed of path loss, shadowing fading, and multi-path fading channel responses. To evaluate the performance, the conditions energy consumption and throughput analysis are performed. Through simulation results, the incremental cooperative scheme outperformed by 66.8% better at spectral efficiency 2 than the DBF scheme in terms of the energy consumption metric. Whereas, in terms of throughput metric, overall SNR (signal-to-noise ratio) ranged from −20 to 30 dB the beamforming scheme had the best performance in which the beamforming scheme at SNR 0 dB achieved 85.4% better than the multi-hop scheme. Finally, in terms of normalized throughput metric in low SNR range between −20 and 1 dB the ABF scheme had the best performance over the others in which the ABF at SNR 0 dB achieved 75.4% better than the multi-hop scheme. Whereas, in high SNR range between 2 and 30 dB the IDF scheme had the best performance in which the IDF at SNR 10 dB achieved 62.2% better than the multi-hop scheme.

Details

Title
Energy Consumption Analysis of Beamforming and Cooperative Schemes for Aircraft Wireless Sensor Networks
Author
Kim, Seung-Hwan; Jae-Woo, Kim  VIAFID ORCID Logo  ; Dong-Seong, Kim  VIAFID ORCID Logo 
First page
4374
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2418881713
Copyright
© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.