Full Text

Turn on search term navigation

Copyright © 2020, Lombardo et al.; licensee Beilstein-Institut. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Central nervous system diseases are a heavy burden on society and health care systems. Hence, the delivery of drugs to the brain has gained more and more interest. The brain is protected by the blood–brain barrier (BBB), a selective barrier formed by the endothelial cells of the cerebral microvessels, which at the same time acts as a bottleneck for drug delivery by preventing the vast majority of drugs to reach the brain. To overcome this obstacle, drugs can be loaded inside nanoparticles that can carry the drug through the BBB. However, not all particles are able to cross the BBB and a multitude of factors needs to be taken into account when developing a carrier system for this purpose. Depending on the chosen pathway to cross the BBB, nanoparticle material, size and surface properties such as functionalization and charge should be tailored to fit the specific route of BBB crossing.

Details

Title
Key for crossing the BBB with nanoparticles: the rational design
Author
Lombardo, Sonia M; Schneider, Marc; Türeli, Akif E; Nazende, Günday Türeli
University/institution
U.S. National Institutes of Health/National Library of Medicine
Pages
866-883
Publication year
2020
Publication date
2020
Publisher
Beilstein-Institut zur Föerderung der Chemischen Wissenschaften
e-ISSN
21904286
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2418908163
Copyright
Copyright © 2020, Lombardo et al.; licensee Beilstein-Institut. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.