Abstract

Fusion and apoptosis share a breakdown of the membrane phospholipids asymmetry, modes of which are largely unknown in osteoclastogenesis. Here, we investigated the externalization of phosphatidylserine (PS) and its receptors, and their biological functions in osteoclastogenesis. Strong immunoreactivities in vivo for the PS receptors TIM4, BAI1, and STAB2 were observed in the TRAP-positive multinucleated cells in the alveolar bone that was being remodeled around the developing dental follicles in rats. These receptors were significantly upregulated during M-CSF/RANKL-induced in vitro osteoclastogenesis using mouse bone marrow-derived cells. PS externalization in preosteoclasts was increased by the M-CSF/RANKL treatment. Multinucleation of preosteoclasts was markedly inhibited by antibodies against PS and its receptors. Among the investigated lipid transporter proteins, floppases (Abcb4, Abcc5, and Abcg1) were upregulated, whereas flippases (Atp11c and Atp8a1) downregulated during osteoclastogenesis. Preosteoclast fusion was markedly blocked by the ATPase inhibitor Na3VO4 and siRNAs against Abcc5 and Abcg1, revealing the importance of these lipid transporters in PS externalization. Further, the levels of Cd47 and Cd31, don’t-eat-me signal inducers, were increased or sustained in the early phase of osteoclastogenesis, whereas those of AnnexinI and Mfg-e8, eat-me signals inducers, were increased in the late apoptotic phase. In addition, Z-VAD-FMK, a pan caspase inhibitor, had no effect on preosteoclast fusion in the early phase of osteoclastogenesis, whereas Abs against PS, TIM4, and BAI1 decreased osteoclast apoptosis during the late phase. These results suggest that PS externalization is essential for the whole process of osteoclastogenesis and share PS receptors and transporters in the early stage fusion and late stage apoptosis. Therefore, modulation of PS and its receptors could be a useful strategy to develop anti-bone resorptive agents.

Details

Title
Dual role of phosphatidylserine and its receptors in osteoclastogenesis
Author
Kang Jee-Hae 1 ; Hyun-Mi, Ko 1 ; Geum-Dong, Han 1 ; Su-Young, Lee 1 ; Jung-Sun, Moon 1 ; Min-Seok, Kim 1 ; Jeong-Tae, Koh 1 ; Sun-Hun, Kim 1 

 Chonnam National University, Dental Science Research Institute, School of Dentistry, Gwangju, Korea (GRID:grid.14005.30) (ISNI:0000 0001 0356 9399) 
Publication year
2020
Publication date
Jul 2020
Publisher
Springer Nature B.V.
e-ISSN
20414889
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2419204765
Copyright
© The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.