Abstract

Taking advantage of the magnetoelectric and its inverse effect, this article demonstrates strain-mediated magnetoelectric write and read operations simultaneously in Co60Fe20B20/Pb(Mg1/3Nb2/3)0.7Ti0.3O3 heterostructures based on a pseudo-magnetization µ ≡ mx2 − my2. By applying an external DC-voltage across a (011)-cut PMN-PT substrate, the ferroelectric polarization is re-oriented, which results in an anisotropic in-plane strain that transfers to the CoFeB thin film and changes its magnetic anisotropy Hk. The change in Hk in-turn results in a 90° rotation of the magnetic easy axis for sufficiently high voltages. Simultaneously, the inverse effect is employed to read changes of the magnetic properties. The change of magnetization in ferromagnetic (FM) layer induces an elastic stress in the piezoelectric (PE) layer, which generates a PE potential that can be used to readout the magnetic state of the FM layer. The experimental results are in excellent qualitative agreement with an equivalent circuit model that considers how magnetic properties are electrically controlled in such a PE/FM heterostructure and how a back-voltage is generated due to changing magnetic properties in a self-consistent model. We demonstrated that a change of easy axis of magnetization due to an applied voltage can be directly used for information processing, which is essential for future ME based devices.

Details

Title
Demonstration of a pseudo-magnetization based simultaneous write and read operation in a Co60Fe20B20/Pb(Mg1/3Nb2/3)0.7Ti0.3O3 heterostructure
Author
Shen Tingting 1 ; Ostwal Vaibhav 2 ; Camsari, Kerem Y 3 ; Appenzeller Joerg 2 

 Purdue University, Department of Physics and Astronomy, West Lafayette, USA (GRID:grid.169077.e) (ISNI:0000 0004 1937 2197); Purdue University, Birck Nanotechnology Center, West Lafayette, USA (GRID:grid.169077.e) (ISNI:0000 0004 1937 2197) 
 Purdue University, School of Electrical and Computer Engineering, West Lafayette, USA (GRID:grid.169077.e) (ISNI:0000 0004 1937 2197); Purdue University, Birck Nanotechnology Center, West Lafayette, USA (GRID:grid.169077.e) (ISNI:0000 0004 1937 2197) 
 Purdue University, School of Electrical and Computer Engineering, West Lafayette, USA (GRID:grid.169077.e) (ISNI:0000 0004 1937 2197) 
Publication year
2020
Publication date
2020
Publisher
Nature Publishing Group
e-ISSN
20452322
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2419204792
Copyright
© The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.