Full text

Turn on search term navigation

© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In a recent reformulation of the Marrucci-Ianniruberto constitutive equation for the rheology of entangled polymer melts in the context of nonequilibrium thermodynamics, rather large values of the convective constraint release parameter βccr had to be used in order for the model not to violate the second law of thermodynamics. In this work, we present an appropriate modification of the model, which avoids the splitting of the evolution equation for the conformation tensor into an orientation and a stretching part. Then, thermodynamic admissibility simply dictates that βccr ≥ 0, thus allowing for more realistic values of βccr to be chosen. Moreover, and in view of recent experimental evidence for a transient stress undershoot (following the overshoot) at high shear rates, whose origin may be traced back to molecular tumbling, we have incorporated additional terms into the model accounting, at least in an approximate way, for non-affine deformation through a slip parameter ξ. Use of the new model to describe available experimental data for the transient and steady-state shear and elongational rheology of entangled polystyrene melts and concentrated solutions shows close agreement. Overall, the modified model proposed here combines simplicity with accuracy, which renders it an excellent choice for managing complex viscoelastic fluid flows in large-scale numerical calculations.

Details

Title
Simple, Accurate and User-Friendly Differential Constitutive Model for the Rheology of Entangled Polymer Melts and Solutions from Nonequilibrium Thermodynamics
Author
Stephanou, Pavlos S  VIAFID ORCID Logo  ; Tsimouri, Ioanna Ch; Mavrantzas, Vlasis G  VIAFID ORCID Logo 
First page
2867
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
19961944
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2419234001
Copyright
© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.