It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
N-doping plays an irreplaceable role in controlling the electron concentration of organic semiconductors thus to improve performance of organic semiconductor devices. However, compared with many mature p-doping methods, n-doping of organic semiconductor is still of challenges. In particular, dopant stability/processability, counterion-semiconductor immiscibility and doping induced microstructure non-uniformity have restricted the application of n-doping in high-performance devices. Here, we report a computer-assisted screening approach to rationally design of a triaminomethane-type dopant, which exhibit extremely high stability and strong hydride donating property due to its thermally activated doping mechanism. This triaminomethane derivative shows excellent counterion-semiconductor miscibility (counter cations stay with the polymer side chains), high doping efficiency and uniformity. By using triaminomethane, we realize a record n-type conductivity of up to 21 S cm−1 and power factors as high as 51 μW m−1 K−2 even in films with thicknesses over 10 μm, and we demonstrate the first reported all-polymer thermoelectric generator.
Realizing efficient n-doping in organic thermoelectrics remains a challenge due to dopant-semiconductor immiscibility, poor dopant stability and low doping efficiency. Here, the authors use computer-assisted screening to develop n-dopants for thermoelectric polymers that show record power factors.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details




1 Peking University, Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Beijing, China (GRID:grid.11135.37) (ISNI:0000 0001 2256 9319)
2 Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Organic Solids, Institute of Chemistry, Beijing, China (GRID:grid.9227.e) (ISNI:0000000119573309)
3 College of Engineering, Peking University, Department of Materials Science and Engineering, Beijing, China (GRID:grid.11135.37) (ISNI:0000 0001 2256 9319)