It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Multi-channel LED luminaires offer a powerful tool to vary retinal receptor signals while keeping visual parameters such as color or brightness perception constant. This technology could provide new fields of application in indoor lighting since the spectrum can be enhanced individually to the users’ favor or task. One possible application would be to optimize a light spectrum by using the pupil diameter as a parameter to increase the visual acuity. A spectral- and time-dependent pupil model is the key requirement for this aim. We benchmarked in our work selected L- and M-cone based pupil models to find the estimation error in predicting the pupil diameter for chromatic and polychromatic spectra at 100 cd/m2. We report an increased estimation error up to 1.21 mm for 450 nm at 60–300 s exposure time. At short exposure times, the pupil diameter was approximately independent of the used spectrum, allowing to use the luminance for a pupil model. Polychromatic spectra along the Planckian locus showed at 60–300 s exposure time, a prediction error within a tolerance range of ± 0.5 mm. The time dependency seems to be more essential than the spectral dependency when using polychromatic spectra.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Technical University of Darmstadt, Department of Electrical Engineering and Information Technology, Laboratory of Lighting Technology, Darmstadt, Germany (GRID:grid.6546.1) (ISNI:0000 0001 0940 1669)