Full text

Turn on search term navigation

© 2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Zooplankton play an important role in global biogeochemistry, and their secondary production supports valuable fisheries of the world's oceans. Currently, zooplankton standing stocks cannot be estimated using remote sensing techniques. Hence, coupled physical–biogeochemical models (PBMs) provide an important tool for studying zooplankton on regional and global scales. However, evaluating the accuracy of zooplankton biomass estimates from PBMs has been a major challenge due to sparse observations. In this study, we configure a PBM for the Gulf of Mexico (GoM) from 1993 to 2012 and validate the model against an extensive combination of biomass and rate measurements. Spatial variability in a multidecadal database of mesozooplankton biomass for the northern GoM is well resolved by the model with a statistically significant (p < 0.01) correlation of 0.90. Mesozooplankton secondary production for the region averaged 66±8×109 kg C yr-1, equivalent to 10 % of net primary production (NPP), and ranged from 51 to 82×109 kg C yr-1, with higher secondary production inside cyclonic eddies and substantially reduced secondary production in anticyclonic eddies. Model results from the shelf regions suggest that herbivory is the dominant feeding mode for small mesozooplankton (< 1 mm), whereas larger mesozooplankton are primarily carnivorous. In open-ocean oligotrophic waters, however, both mesozooplankton groups show proportionally greater reliance on heterotrophic protists as a food source. This highlights an important role of microbial and protistan food webs in sustaining mesozooplankton biomass in the GoM, which serves as the primary food source for early life stages of many commercially important fish species, including tuna.

Details

Title
Quantifying spatiotemporal variability in zooplankton dynamics in the Gulf of Mexico with a physical–biogeochemical model
Author
Shropshire, Taylor A 1 ; Morey, Steven L 2 ; Chassignet, Eric P 1   VIAFID ORCID Logo  ; Bozec, Alexandra 1 ; Coles, Victoria J 3 ; Landry, Michael R 4 ; Swalethorp, Rasmus 4 ; Zapfe, Glenn 5 ; Stukel, Michael R 1 

 Department of Earth Ocean and Atmospheric Sciences, Florida State University, Tallahassee, FL 32303, USA; Center for Ocean-Atmospheric Prediction Studies, Florida State University, Tallahassee, FL, USA 
 School of the Environment, Florida A&M University, Tallahassee, FL, USA 
 University of Maryland Center for Environmental Science, PO Box 775, Cambridge, MD 21613, USA 
 Integrative Oceanography Division, Scripps Institution of Oceanography, 8622 Kennel Way, La Jolla, CA 92037, USA 
 University of Southern Mississippi, Division of Coastal Sciences, Hattiesburg, MS 39406, USA 
Pages
3385-3407
Publication year
2020
Publication date
2020
Publisher
Copernicus GmbH
ISSN
17264170
e-ISSN
17264189
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2419917642
Copyright
© 2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.