It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
For rapid growth in technology and automat- ion, human tasks are being taken over by robots as robots have proven to be better with both speed and precision. One of the major and widespread usage of these robots is in the industrial businesses, where they are employed to carry massive loads in and around work areas. As these working environments might not be completely localized and could be dynamically changing, new approaches must be evaluated to guarantee a crash-free way of performing duties.This paper presents a new and efficient fusion algorithm for solving path planning problem in a custom 2D environment. This fusion algorithm integrates an improved and optimized version of both, A* algorithm and the Artificial potential field method. Firstly, an initial or preliminary path is planned in the environmental model by adopting A* algorithm. The heuristic function of this A* algorithm is optimized and improved according to the environmental model. This is followed by selecting and saving the key nodes in the initial path Lastly, on the basis of these saved key nodes, path smoothing is done by artificial potential field method. Our simulation results carried out using Python viz. libraries indicate that the new fusion algorithm is feasible and superior in smoothness performance and can satisfy as a time-efficient and cheaper alternative to conventional A* strategies of path planning.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer