It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Over the past decade, the plasmonics of graphene and black phosphorus (BP) were widely recognized as promising media for establishing linear and nonlinear light-matter interactions. Compared to the conventional metals, they support significant light-matter interaction of high efficiency and show undispersed optical properties. Furthermore, in contrast to the conventional metals, the plasmonic properties of graphene and BP structure can be tuned by electrical and chemical doping. In this review, a deep attention was paid toward the second- and third-order nonlinear plasmonic modes of graphene and BP. We present a theoretical framework for calculating the lifetime for surface plasmons modes of graphene and BP assisted by the coupled mode theory. The effect of the Fermi energy on the second-order and third-order nonlinear response is studied in detail. We survey the recent advances in nonlinear optics and the applications of graphene and BP-based tunable plasmonic devices such as light modulation devices, switches, biosensors, and other nonlinear photonic devices. Finally, we highlight a few representative current applications of graphene and BP to photonic and optoelectronic devices.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer