It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Flexible transparent electrodes are in significant demand in applications including solar cells, light-emitting diodes, and touch panels. The combination of high optical transparency and high electrical conductivity, however, sets a stringent requirement on electrodes based on metallic materials. To obtain practical sheet resistances, the visible transmittance of the electrodes in previous studies is typically lower than the transparent substrates the electrode structures are built on, namely, the transmittance relative to the substrate is <100%. Here, we demonstrate a flexible dielectric-metal-dielectric-based electrode with ~88.4% absolute transmittance, even higher than the ~88.1% transmittance of the polymer substrate, which results in a relative transmittance of ~100.3%. This non-trivial performance is achieved by leveraging an optimized dielectric-metal-dielectric structure guided by analytical and quantitative principles described in this work, and is attributed to an ultra-thin and ultra-smooth copper-doped silver film with low optical loss and low sheet resistance.
Designing flexible and transparent electrodes for high-performance optoelectronic devices remains a challenge. Here, the authors presented conductive and flexible dielectric-metal-dielectric multi-layers electrodes based on Cu-doped Ag film (thickness of 6.5 nm) with 100.3% relative transmittance.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details



1 University of Michigan, Department of Electrical Engineering and Computer Science, Ann Arbor, USA (GRID:grid.214458.e) (ISNI:0000000086837370)
2 Nanjing University of Science and Technology, MIIT Key Laboratory of Thermal Control of Electronic Equipment, School of Energy and Power Engineering, Nanjing, China (GRID:grid.410579.e) (ISNI:0000 0000 9116 9901)
3 Huazhong University of Science and Technology, School of Optical and Electronic Information, Wuhan, China (GRID:grid.33199.31) (ISNI:0000 0004 0368 7223); Huazhong University of Science and Technology, Wuhan National Laboratory for Optoelectronics, Wuhan, China (GRID:grid.33199.31) (ISNI:0000 0004 0368 7223)