Full Text

Turn on search term navigation

© 2020 Cornelisz et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Background

The importance of randomization in clinical trials has long been acknowledged for avoiding selection bias. Yet, bias concerns re-emerge with selective attrition. This study takes a causal inference perspective in addressing distinct scenarios of missing outcome data (MCAR, MAR and MNAR).

Methods

This study adopts a causal inference perspective in providing an overview of empirical strategies to estimate the average treatment effect, improve precision of the estimator, and to test whether the underlying identifying assumptions hold. We propose to use Random Forest Lee Bounds (RFLB) to address selective attrition and to obtain more precise average treatment effect intervals.

Results

When assuming MCAR or MAR, the often untenable identifying assumptions with respect to causal inference can hardly be verified empirically. Instead, missing outcome data in clinical trials should be considered as potentially non-random unobserved events (i.e. MNAR). Using simulated attrition data, we show how average treatment effect intervals can be tightened considerably using RFLB, by exploiting both continuous and discrete attrition predictor variables.

Conclusions

Bounding approaches should be used to acknowledge selective attrition in randomized clinical trials in acknowledging the resulting uncertainty with respect to causal inference. As such, Random Forest Lee Bounds estimates are more informative than point estimates obtained assuming MCAR or MAR.

Details

Title
Addressing missing data in randomized clinical trials: A causal inference perspective
Author
Cornelisz, Ilja; Cuijpers, Pim; Donker, Tara; Chris van Klaveren
First page
e0234349
Section
Research Article
Publication year
2020
Publication date
Jul 2020
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2420594020
Copyright
© 2020 Cornelisz et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.