Full text

Turn on search term navigation

© 2020 Athens et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The growth of administrative data made available publicly, often in near-real time, offers new opportunities for monitoring conditions that impact community health. Urban blight—manifestations of adverse social processes in the urban environment, including physical disorder, decay, and loss of anchor institutions—comprises many conditions considered to negatively affect the health of communities. However, measurement strategies for urban blight have been complicated by lack of uniform data, often requiring expensive street audits or the use of proxy measures that cannot represent the multifaceted nature of blight. This paper evaluates how publicly available data from New York City’s 311-call system can be used in a natural language processing approach to represent urban blight across the city with greater geographic and temporal precision. We found that our urban blight algorithm, which includes counts of keywords (‘tokens’), resulted in sensitivity ~90% and specificity between 55% and 76%, depending on other covariates in the model. The percent of 311 calls that were ‘blight related’ at the census tract level were correlated with the most common proxy measure for blight: short, medium, and long-term vacancy rates for commercial and residential buildings. We found the strongest association with long-term (>1 year) commercial vacancies (Pearson’s correlation coefficient = 0.16, p < 0.001). Our findings indicate the need of further validation, as well as testing algorithms that disambiguate the different facets of urban blight. These facets include physical disorder (e.g., litter, overgrown lawns, or graffiti) and decay (e.g., vacant or abandoned lots or sidewalks in disrepair) that are manifestations of social processes such as (loss of) neighborhood cohesion, social control, collective efficacy, and anchor institutions. More refined measures of urban blight would allow for better targeted remediation efforts and improved community health.

Details

Title
Using 311 data to develop an algorithm to identify urban blight for public health improvement
Author
Athens, Jessica; Mehta, Setu; Wheelock, Sophie; Chaudhury, Nupur; Zezza, Mark
First page
e0235227
Section
Research Article
Publication year
2020
Publication date
Jul 2020
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2422010045
Copyright
© 2020 Athens et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.