It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
MXene as a novel two-dimensional (2D) material exhibits a lot of advantages in nonlinear optics. However, the common MXene, Ti3C2Tx and Ti2CTx nanosheets, easily suffer from degradation under ambient conditions, greatly limiting their practical applications. Here, we demonstrated one of MXene compounds, V2CTx, which has a strong modulation depth (nearly 50%), can serve as an excellent saturable absorber (SA) in passively mode-locked (PML) fiber lasers. More importantly, 206th harmonic order has been successfully generated in Er-doped mode-locked fiber laser, exhibiting maximum repetition rate of 1.01 GHz and pulse duration of 940 fs, which to the best of our knowledge, is the highest harmonic mode-locked fiber laser from the MXene SA so far. In addition, the high harmonic order mode-locked operation can maintain at least 24 h without any noticeable change, suggesting MXene V2CTx nanosheets have excellent stability in this mode-locked fiber laser. It is anticipated that the present work can pave the way to new design for MXene-based heterostructures for high-performance harmonic mode-locked lasers.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer