Full Text

Turn on search term navigation

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Transformerless grid-connected inverters are of great industrial value in photovoltaic power generation. However, the direct current (DC) induced into the inverter’s output degrades the power quality of the grid. Recently, a back-propagation neural work proportional–integral–derivative (BP-PID) scheme has proven helpful in solving this problem. However, this scheme can be improved by reducing the suppressing time and overshoot. A genetic algorithm (GA)-based DC current minimization scheme, namely the genetic-algorithm-based BP-PID (GA-BP-PID) scheme, was established in this study. In this scheme, GA was used off-line to optimize the initial weights within the BP neural network. Subsequently, the optimal weight was applied to the online DC current suppression process. Compared with the BP-PID scheme, the proposed scheme can reduce the suppressing time by 59% and restrain the overshoot. A prototype of the proposed scheme was implemented and tested on experimental hardware as a proof of concept. The results of the scheme were verified using a three-phase inverter experiment. The novel GA-PB-PID scheme proposed in this study was proven efficient in reducing the suppressing time and overshoot.

Details

Title
A Genetic-Algorithm-Based DC Current Minimization Scheme for Transformless Grid-Connected Photovoltaic Inverters
Author
Song, Lei 1 ; Huang, Lijun 2 ; Long, Bo 3 ; Li, Fusheng 1 

 School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China; [email protected] 
 Guangzhou Haige Communications Group Incorporated Company, Guangzhou 510700, China 
 School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China; [email protected] 
First page
746
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
19961073
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2422328816
Copyright
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.