It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Marine sponges are sources of various bioactive metabolites, including several anticancer drugs, produced mainly by sponge-associated microbes. Palk Bay, on the south-east coast of India, is an understudied, highly disturbed reef environment exposed to various anthropogenic and climatic stresses. In recent years, Palk Bay suffered from pollution due to the dumping of untreated domestic sewage, effluents from coastal aquaculture, tourism, salt pans, cultivation of exotic seaweeds, and geogenic heavy-metal pollution, especially arsenic, mercury, cadmium, and lead. Low microbial-abundant sponge species, such as Gelliodes pumila and Cliona lobata, were found to be ubiquitously present in this reef environment. Triplicate samples of each of these sponge species were subjected to Illumina MiSeq sequencing using V3–V4 region-specific primers. In both C. lobata and G. pumila, there was an overwhelming dominance (98 and 99%) of phylum Candidatus Saccharibacteria and Proteobacteria, respectively. The overall number of operational taxonomic units (OTUs) was 68 (40 and 13 OTUs unique to G. pumila and C. lobata, respectively; 15 shared OTUs). Alphaproteobacteria was the most abundant class in both the sponge species. Unclassified species of phylum Candidatus Saccharibacteria from C. lobata and Chelotivorans composti from G. pumila were the most abundant bacterial species. The predominance of Alphaproteobacteria also revealed the occurrence of various xenobiotic-degrading, surfactant-producing bacterial genera in both the sponge species, indirectly indicating the possible polluted reef status of Palk Bay. Studies on sponge microbiomes at various understudied geographical locations might be helpful in predicting the status of reef environments.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Pondicherry University, Department of Microbiology, School of Life Sciences, Puducherry, India (GRID:grid.412517.4) (ISNI:0000 0001 2152 9956)
2 Pondicherry University, Department of Microbiology, School of Life Sciences, Puducherry, India (GRID:grid.412517.4) (ISNI:0000 0001 2152 9956); Pondicherry University, Centre for Bioinformatics, School of Life Sciences, Puducherry, India (GRID:grid.412517.4) (ISNI:0000 0001 2152 9956)
3 Pondicherry University, Department of Food Science and Technology, School of Lifesciences, Puducherry, India (GRID:grid.412517.4) (ISNI:0000 0001 2152 9956)