Full text

Turn on search term navigation

© 2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Benthic foraminifera are abundant marine protists which play an important role in the transfer of energy in the form of organic matter and nutrients to higher trophic levels. Due to their aquatic lifestyle, factors such as water temperature, salinity and pH are key drivers controlling biomass turnover through foraminifera. In this study the influence of salinity on the feeding activity of foraminifera was tested. Two species, Ammonia tepida andHaynesina germanica, were collected from a mudflat in northern Germany (Friedrichskoog) and cultured in the laboratory at 20 C and a light–dark cycle of 16:08 h. A lyophilized algal powder from Dunaliella tertiolecta, which was isotopically enriched with 13C and 15N, was used as a food source. The feeding experiments were carried out at salinity levels of 11, 24 and 37 practical salinity units (PSU) and were terminated after 1, 5 and 14 d. The quantification of isotope incorporation was carried out by isotope ratio mass spectrometry. Ammonia tepida exhibited a 10-fold higher food uptake compared to H. germanica. Furthermore, in A. tepida the food uptake increased with increasing salinity but not in H. germanica. Over time (from 1–5 to 14 d) food C retention increased relative to food N in A. tepida while the opposite was observed for H. germanica. This shows that if the salinity in the German Wadden Sea increases, A. tepida is predicted to exhibit a higher C and N uptake and turnover than H. germanica, with accompanying changes in C and N cycling through the foraminiferal community. The results of this study show how complex and differently food C and N processing of foraminiferal species respond to time and to environmental conditions such as salinity.

Details

Title
Reviews and syntheses: Salinity-dependent algae uptake and subsequent carbon and nitrogen metabolisms of two intertidal foraminifera (Ammonia tepida and Haynesina germanica)
Author
Lintner, Michael 1 ; Biedrawa, Bianca 1 ; Wukovits, Julia 1   VIAFID ORCID Logo  ; Wanek, Wolfgang 2   VIAFID ORCID Logo  ; Heinz, Petra 1 

 Department of Palaeontology, University of Vienna, Vienna, Austria 
 Department of Microbiology and Ecosystem Science, Terrestrial Ecosystem Research, University of Vienna, Vienna, Austria 
Pages
3723-3732
Publication year
2020
Publication date
2020
Publisher
Copernicus GmbH
ISSN
17264170
e-ISSN
17264189
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2424043378
Copyright
© 2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.