It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Abstract
Plant metabolites produced via diverse pathways are important for plant survival, human nutrition and medicine. However, the pathway memberships of most plant enzyme genes are unknown. While co-expression is useful for assigning genes to pathways, expression correlation may exist only under specific spatiotemporal and conditional contexts. Utilizing >600 expression values and similarity data combinations from tomato, three strategies for predicting membership in 85 pathways were explored: naive prediction (identifying pathways with the most similarly expressed genes), unsupervised and supervised learning. Optimal predictions for different pathways require distinct data combinations that, in some cases, are indicative of biological processes relevant to pathway functions. Naive prediction produced higher error rates compared with machine learning methods. In 52 pathways, unsupervised learning performed better than a supervised approach, which may be due to the limited availability of training data. Furthermore, using gene-to-pathway expression similarities led to prediction models that outperformed those based simply on gene expression levels. Our study highlights the need to extensively explore expression-based features and prediction strategies to maximize the accuracy of metabolic pathway membership assignment. We anticipate that the prediction framework outlined here can be applied to other species and also be used to improve plant pathway annotation.
Competing Interest Statement
The authors have declared no competing interest.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer