It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
In this study, the 3D printability of a series of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV)/poly(lactic acid) (PLA) blends were investigated using fused filament fabrication (FFF). The studied blends suffered from poor 3D printability due to differences in compatibility and low thermal resistance. These shortcomings were addressed by incorporating a functionalized styrene-acrylate copolymer with oxirane moieties as a chain extender (CE). To enhance mechanical properties, the synergistic effect of 3D printing parameters such as printing temperature and speed, layer thickness and bed temperature were explored. Rheological analysis showed improvement in the 3D printability of PHBV:PLA:CE blend by allowing a higher printing temperature (220 °C) and sufficient printing speed (45 mm s−1). The surface morphology of fractured tensile specimens showed good bonding between layers when a bed temperature of 60 °C was used and a layer thickness of 0.25 mm was designed. The optimized printing samples shown higher storage modulus and strength, resulting in stiffer and stronger parts. The crystallinity, morphology and performance of the 3D printed products were correlated to share key methods to improve the 3D printability of PHBV:PLA based blends which may be implemented in other biopolymer blends, and further highlight how process parameters enhance the mechanical performance of 3D printed products.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 University of Guelph, School of Engineering, Guelph, Canada (GRID:grid.34429.38) (ISNI:0000 0004 1936 8198); University of Guelph, Departmet of Plant Agriculture, Crop Science Building, Bioproducts Discovery and Development Center, Guelph, Canada (GRID:grid.34429.38) (ISNI:0000 0004 1936 8198)