It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Spatially-embedded networks represent a large class of real-world networks of great scientific and societal interest. For example, transportation networks (such as railways), communication networks (such as Internet routers), and biological networks (such as fungal foraging networks) are all spatially embedded. Both the density of interactions (presence of edges) and intensity of interactions (edge weights) are typically found to decrease as a function of spatial separation of nodes in these networks. Communication and mobility of groups of individuals have also been shown to decline with their spatial separation, and the so-called gravity model postulates that this decline takes the form of a power-law holding at all distances. There is however some evidence that the rate of decline might change as the distance increases beyond a certain value, called a change point, but there have been few statistically principled methods for determining the existence and location of change points or assessing the change in intensity of interactions associated with them. We introduce such a method within the Bayesian paradigm and apply it to anonymized mobile call detail records (CDRs). Our results are potentially useful in settings where understanding social and spatial mixing of people is important, such as in the design of cluster randomized trials for studying interventions for infectious diseases, but we also anticipate the method to be useful for investigating more generally how distance may affect tie strengths in general in spatially embedded networks.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Harvard School of Public Health, Department of Biostatistics, Boston, USA (GRID:grid.38142.3c) (ISNI:000000041936754X)