Abstract

Electrical manipulation of skyrmions attracts considerable attention for its rich physics and promising applications. To date, such a manipulation is realized mainly via spin-polarized current based on spin-transfer torque or spin–orbital torque effect. However, this scheme is energy consuming and may produce massive Joule heating. To reduce energy dissipation and risk of heightened temperatures of skyrmion-based devices, an effective solution is to use electric field instead of current as stimulus. Here, we realize an electric-field manipulation of skyrmions in a nanostructured ferromagnetic/ferroelectrical heterostructure at room temperature via an inverse magneto-mechanical effect. Intriguingly, such a manipulation is non-volatile and exhibits a multistate feature. Numerical simulations indicate that the electric-field manipulation of skyrmions originates from strain-mediated modification of effective magnetic anisotropy and Dzyaloshinskii–Moriya interaction. Our results open a direction for constructing low-energy-dissipation, non-volatile, and multistate skyrmion-based spintronic devices.

Spin-polarized current manipulation of magnetic skyrmions is energy consuming. Here, the authors achieve an electric-field manipulation of individual skyrmions in a nanostructured ferromagnetic/ferroelectrical heterostructure at room temperature via an inverse magneto-mechanical effect.

Details

Title
Electric-field-driven non-volatile multi-state switching of individual skyrmions in a multiferroic heterostructure
Author
Wang, Yadong 1 ; Wang, Lei 2 ; Xia Jing 3 ; Lai Zhengxun 4 ; Guo, Tian 1 ; Zhang Xichao 3 ; Hou Zhipeng 1   VIAFID ORCID Logo  ; Gao Xingsen 1   VIAFID ORCID Logo  ; Mi Wenbo 4   VIAFID ORCID Logo  ; Feng, Chun 2 ; Zeng, Min 1 ; Zhou, Guofu 1 ; Yu, Guanghua 2 ; Wu Guangheng 5 ; Zhou, Yan 3   VIAFID ORCID Logo  ; Wang, Wenhong 5 ; Xi-xiang, Zhang 6   VIAFID ORCID Logo  ; Liu, Junming 7   VIAFID ORCID Logo 

 Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute for Advanced Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, China (GRID:grid.263785.d) (ISNI:0000 0004 0368 7397); National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou, China (GRID:grid.263785.d) (ISNI:0000 0004 0368 7397) 
 University of Science and Technology Beijing, School of Materials Science and Engineering, Beijing, China (GRID:grid.69775.3a) (ISNI:0000 0004 0369 0705) 
 The Chinese University of Hong Kong, Shenzhen, School of Science and Engineering, Guangdong, China (GRID:grid.10784.3a) (ISNI:0000 0004 1937 0482) 
 Tianjin University, Colleage of Science, Tianjin, China (GRID:grid.33763.32) (ISNI:0000 0004 1761 2484) 
 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China (GRID:grid.458438.6) (ISNI:0000 0004 0605 6806) 
 Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia (GRID:grid.45672.32) (ISNI:0000 0001 1926 5090) 
 Laboratory of Solid State Microstructures and Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China (GRID:grid.41156.37) (ISNI:0000 0001 2314 964X) 
Publication year
2020
Publication date
2020
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2424565904
Copyright
© The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.