Abstract

Materials with random microstructure are characterized by additional thermodynamic parameters, entropy and temperature of microstructure. It has been argued that there is one more law of thermodynamics: entropy of microstructure decays in isolated systems. In this paper, we check this assertion experimentally for the process of grain growth. We show that entropy of grain structure decays indeed as expected. We study also the equation of state for microstructure entropy. In general, microstructure entropy should be a function of microstructure energy and the average grain size. We observed that the equation of state degenerates, and there is a universal dependence of microstructure entropy on microstructure energy, at least at the stage of self similar grain growth.

Details

Title
Entropy decay during grain growth
Author
Vedanti Pawan 1 ; Wu, Xin 1 ; Berdichevsky, Victor 1 

 Wayne State University, Department of Mechanical Engineering, Detroit, USA (GRID:grid.254444.7) (ISNI:0000 0001 1456 7807) 
Publication year
2020
Publication date
2020
Publisher
Nature Publishing Group
e-ISSN
20452322
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2424566866
Copyright
© The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.