It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
The mitotic count in breast carcinoma is an important prognostic marker. Unfortunately substantial inter- and intra-laboratory variation exists when pathologists manually count mitotic figures. Artificial intelligence (AI) coupled with whole slide imaging offers a potential solution to this problem. The aim of this study was to accordingly critique an AI tool developed to quantify mitotic figures in whole slide images of invasive breast ductal carcinoma.
Methods
A representative H&E slide from 320 breast invasive ductal carcinoma cases was scanned at 40x magnification. Ten expert pathologists from two academic medical centers labeled mitotic figures in whole slide images to train and validate an AI algorithm to detect and count mitoses. Thereafter, 24 readers of varying expertise were asked to count mitotic figures with and without AI support in 140 high-power fields derived from a separate dataset. Their accuracy and efficiency of performing these tasks were calculated and statistical comparisons performed.
Results
For each experience level the accuracy, precision and sensitivity of counting mitoses by users improved with AI support. There were 21 readers (87.5%) that identified more mitoses using AI support and 13 reviewers (54.2%) that decreased the quantity of falsely flagged mitoses with AI. More time was spent on this task for most participants when not provided with AI support. AI assistance resulted in an overall time savings of 27.8%.
Conclusions
This study demonstrates that pathology end-users were more accurate and efficient at quantifying mitotic figures in digital images of invasive breast carcinoma with the aid of AI. Higher inter-pathologist agreement with AI assistance suggests that such algorithms can also help standardize practice. Not surprisingly, there is much enthusiasm in pathology regarding the prospect of using AI in routine practice to perform mundane tasks such as counting mitoses.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer