It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
As COVID-19 makes its way around the globe, each nation must decide when and how to respond. Yet many knowledge gaps persist, and many countries lack the capacity to develop complex models to assess risk and response. This paper aimed to meet this need by developing a model that uses case reporting data as input and provides a four-tiered risk assessment output.
Methods
We used publicly available, country/territory level case reporting data to determine median seeding number, mean seeding time (ST), and several measures of mean doubling time (DT) for COVID-19. We then structured our model as a coordinate plane with ST on the x-axis, DT on the y-axis, and mean ST and mean DT dividing the plane into four quadrants, each assigned a risk level. Sensitivity analysis was performed and countries/territories early in their outbreaks were assessed for risk.
Results
Our main finding was that among 45 countries/territories evaluated, 87% were at high risk for their outbreaks entering a rapid growth phase epidemic. We furthermore found that the model was sensitive to changes in DT, and that these changes were consistent with what is officially known of cases reported and control strategies implemented in those countries.
Conclusions
Our main finding is that the ST/DT Model can be used to produce meaningful assessments of the risk of escalation in country/territory-level COVID-19 epidemics using only case reporting data. Our model can help support timely, decisive action at the national level as leaders and other decision makers face of the serious public health threat that is COVID-19.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer