Abstract

Background

Medical endoscope is widely used in clinical practice for the purpose of diagnosis and treatment, occupying around 5% of the medical device market. Evaluating the true service level of medical endoscope is essential and necessary to improve overall performance of medical diagnosis and treatment, and to maintain competitiveness of endoscope manufacturers, however, such a tool is not available in the market. This study develops an Evaluation Index System (EIS) to assess service level of medical endoscope, and to provide suggestions for improving the service level through the Delphi method.

Methods

Firstly, the possible factors influencing the service level were identified from literature review. In parallel, the Delphi expert method questionnaire was designed and 25 experts were invited to conduct three rounds of questionnaire, to evaluate and rate the possible factors. Finally, we determined the weights associated with the factors, using the analytic hierarchy process (AHP) and percentage method, and developed the service level EIS.

Results

The EIS consists of 3 first-level indicators, 24 s-level indicators and 68 third-level indicators. According to the weights computed using AHP, first-level indicators are ranked as post-sale (0.62), in-sale (0.25) and pre-sale (0.13). Through case verification, the medical endoscope brand Olympus had a total score of 4.17, Shanghai Aohua had a total score of 3.71, and Shanghai Chengyun had a total score of 3.28, which matches its market popularity and ranking in terms of market share. The results obtained from the EIS are consistent with the reality.

Conclusions

The EIS established in this study is comprehensive, reliable and reasonable with strong practicality. The EIS can act as a tool for the endoscope users to evaluate potential products and make informed choices. It also provides a measurable basis for endoscope manufacturers and service providers to improve service quality.

Details

Title
Model construction of medical endoscope service evaluation system-based on the analysis of Delphi method
Author
Zheng, Jun  VIAFID ORCID Logo  ; Ligang Lou; Xie, Ying; Chen, Siyao; Li, Jun; Wei, Jingming; Feng, Jingyi
Pages
1-13
Section
Research article
Publication year
2020
Publication date
2020
Publisher
BioMed Central
e-ISSN
14726963
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2424749505
Copyright
© 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.