It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
LSVT-BIG® is an intensively delivered, amplitude-oriented exercise therapy reported to improve mobility in individuals with Parkinson’s disease (PD). However, questions remain surrounding the efficacy of LSVT-BIG® when compared with similar exercise therapies. Instrumented clinical tests using body-worn sensors can provide a means to objectively monitor patient progression with therapy by quantifying features of motor function, yet research exploring the feasibility of this approach has been limited to date. The aim of this study was to use accelerometer-instrumented clinical tests to quantify features of gait, balance and fine motor control in individuals with PD, in order to examine motor function during and following LSVT-BIG® therapy.
Methods
Twelve individuals with PD undergoing LSVT-BIG® therapy, eight non-exercising PD controls and 14 healthy controls were recruited to participate in the study. Functional mobility was examined using features derived from accelerometry recorded during five instrumented clinical tests: 10 m walk, Timed-Up-and-Go, Sit-to-Stand, quiet stance, and finger tapping. PD subjects undergoing therapy were assessed before, each week during, and up to 13 weeks following LSVT-BIG®.
Results
Accelerometry data captured significant improvements in 10 m walk and Timed-Up-and-Go times with LSVT-BIG® (p < 0.001), accompanied by increased stride length. Temporal features of the gait cycle were significantly lower following therapy, though no change was observed with measures of asymmetry or stride variance. The total number of Sit-to-Stand transitions significantly increased with LSVT-BIG® (p < 0.001), corresponding to a significant reduction of time spent in each phase of the Sit-to-Stand cycle. No change in measures related to postural or fine motor control was observed with LSVT-BIG®. PD subjects undergoing LSVT-BIG® showed significant improvements in 10 m walk (p < 0.001) and Timed-Up-and-Go times (p = 0.004) over a four-week period when compared to non-exercising PD controls, who showed no week-to-week improvement in any task examined.
Conclusions
This study demonstrates the potential for wearable sensors to objectively quantify changes in motor function in response to therapeutic exercise interventions in PD. The observed improvements in accelerometer-derived features provide support for instrumenting gait and sit-to-stand tasks, and demonstrate a rescaling of the speed-amplitude relationship during gait in PD following LSVT-BIG®.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer