It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Osteotomes are bone cutting tools commonly reused in orthopedic surgical procedures. Despite undergoing rigorous cleaning, visual inspection, and sterilization procedures between every use, the condition of the cutting blade edge is commonly not qualitatively assessed. Subjective feedback from surgeons suggests a large variation in osteotome cutting-edge sharpness is found during use. This study seeks to investigate the retention of osteotome cutting-edge sharpness by comparing the wear resistance of as-supplied, electroless nickel, and titanium nitride coated osteotomes following a series of bone cutting tests.
Methods
Changes in edge sharpness were assessed using visual inspection, depth penetration testing that quantified change in the blade sharpness index, and scanning electron microscopy visual analysis. Visual inspection of each osteotome blade edge was then compared to qualitative blade sharpness index measurement.
Results
After use, no cutting-edge damage or change in blade sharpness was detected by visual examination of all three osteotomes; however, the as-supplied osteotome demonstrated 50% loss of blade sharpness index compared to 30% and 15% reduction for the electroless nickel and titanium nitride coated osteotomes, respectively. This finding was supported by scanning electron microscopy evaluation that found greater mechanical damage had occurred along the cutting edge of the as-supplied osteotome compared to the two coated with wear resistant materials.
Conclusions
The rapid loss of blade sharpness found in the as-supplied osteotome supports the degradation in cutting performance frequently reported by surgeons. The findings from this study demonstrate blade sharpness index better detects cutting-edge wear compared to visual inspection. Results from this pilot study also suggest the coating of osteotomes in hard-wearing biocompatible materials assists in retaining cutting-edge sharpness over multiple uses. Further study using a larger sample size is required to validate these findings.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer