Abstract

Background

Induced pluripotent stem cells (iPSCs) have enormous potential in developmental biology studies and in cellular therapies. Although extensively studied and characterized in human and murine models, iPSCs from animals other than mice lack reproducible results.

Methods

Herein, we describe the generation of robust iPSCs from equine and bovine cells through lentiviral transduction of murine or human transcription factors Oct4, Sox2, Klf4, and c-Myc and from human and murine cells using similar protocols, even when different supplementations were used. The iPSCs were analyzed regarding morphology, gene and protein expression of pluripotency factors, alkaline phosphatase detection, and spontaneous and induced differentiation.

Results

Although embryonic-derived stem cells are yet not well characterized in domestic animals, generation of iPS cells from these species is possible through similar protocols used for mouse or human cells, enabling the use of pluripotent cells from large animals for basic or applied purposes. Herein, we also infer that bovine iPS (biPSCs) exhibit similarity to mouse iPSCs (miPSCs), whereas equine iPSs (eiPSCs) to human (hiPSCs).

Conclusions

The generation of reproducible protocols in different animal species will provide an informative tool for producing in vitro autologous pluripotent cells from domestic animals. These cells will create new opportunities in animal breeding through transgenic technology and will support a new era of translational medicine with large animal models.

Details

Title
Generation of induced pluripotent stem cells from large domestic animals
Author
Fabiana Fernandes Bressan  VIAFID ORCID Logo  ; Bassanezze, Vinícius; Laís Vicari de Figueiredo Pessôa; Chester Bittencourt Sacramento; Tathiane Maistro Malta; Kashima, Simone; Neto, Paulo Fantinato; Ricardo De Francisco Strefezzi; Naira Caroline Godoy Pieri; Krieger, José Eduardo; Dimas Tadeu Covas; Flávio Vieira Meirelles
Pages
1-12
Section
Research
Publication year
2020
Publication date
2020
Publisher
BioMed Central
e-ISSN
17576512
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2424769617
Copyright
© 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.