It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Protein kinase C theta, (PRKCQ/PKCθ) is a serine/threonine kinase that is highly expressed in a subset of triple-negative breast cancers (TNBC) and promotes their growth, anoikis resistance, epithelial-mesenchymal transition (EMT), and invasion. Here, we show that PRKCQ regulates the sensitivity of TNBC cells to apoptosis triggered by standard-of-care chemotherapy by regulating levels of pro-apoptotic Bim.
Methods
To determine the effects of PRKCQ expression on chemotherapy-induced apoptosis, shRNA and cDNA vectors were used to modulate the PRKCQ expression in MCF-10A breast epithelial cells or triple-negative breast cancer cells (MDA-MB231Luc, HCC1806). A novel PRKCQ small-molecule inhibitor, 17k, was used to inhibit kinase activity. Viability and apoptosis of cells treated with PRKCQ cDNA/shRNA/inhibitor +/-chemotherapy were measured. Expression levels of Bcl2 family members were assessed.
Results
Enhanced expression of PRKCQ is sufficient to suppress apoptosis triggered by paclitaxel or doxorubicin treatment. Downregulation of PRKCQ also enhanced the apoptosis of chemotherapy-treated TNBC cells. Regulation of chemotherapy sensitivity by PRKCQ mechanistically occurs via regulation of levels of Bim, a pro-apoptotic Bcl2 family member; suppression of Bim prevents the enhanced apoptosis observed with combined PRKCQ downregulation and chemotherapy treatment. Regulation of Bim and chemotherapy sensitivity is significantly dependent on PRKCQ kinase activity; overexpression of a catalytically inactive PRKCQ does not suppress Bim or chemotherapy-associated apoptosis. Furthermore, PRKCQ kinase inhibitor treatment suppressed growth, increased anoikis and Bim expression, and enhanced apoptosis of chemotherapy-treated TNBC cells, phenocopying the effects of PRKCQ downregulation.
Conclusions
These studies support PRKCQ inhibition as an attractive therapeutic strategy and complement to chemotherapy to inhibit the growth and survival of TNBC cells.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer