Abstract

Background

Proper neuronal function is directly dependent on the composition, turnover, and amount of interstitial fluid that bathes the cells. Most of the interstitial fluid is likely to be derived from ion and water transport across the brain capillary endothelium, a process that may be altered in hypertension due to vascular pathologies as endothelial dysfunction and arterial remodelling. In the current study, we investigated the effects of hypertension on the brain for differences in the water homeostasis.

Methods

Magnetic resonance imaging (MRI) was performed on a 7T small animal MRI system on male spontaneously hypertensive rats (SHR) and normotensive Wistar Kyoto rats (WKY) of 10 months of age. The MRI protocol consisted of T2-weighted scans followed by quantitative apparent diffusion coefficient (ADC) mapping to measure volumes of different anatomical structures and water diffusion respectively. After MRI, we assessed the spatial distribution of aquaporin 4 expression around blood vessels.

Results

MRI analysis revealed a significant reduction in overall brain volume and remarkably higher cerebroventricular volume in SHR compared to WKY. Whole brain ADC, as well as ADC values of a number of specific anatomical structures, were significantly lower in hypertensive animals. Additionally, SHR exhibited higher brain parenchymal water content. Immunohistochemical analysis showed a profound expression of aquaporin 4 around blood vessels in both groups, with a significantly larger area of influence around arterioles. Evaluation of specific brain regions revealed a decrease in aquaporin 4 expression around capillaries in the corpus callosum of SHR.

Conclusion

These results indicate a shift in the brain water homeostasis of adult hypertensive rats.

Details

Title
Altered brain fluid management in a rat model of arterial hypertension
Author
Naessens, Daphne M P  VIAFID ORCID Logo  ; Coolen, Bram F; de Vos, Judith; VanBavel, Ed; Strijkers, Gustav J; Erik N. T. P. Bakker
Pages
1-13
Section
Research
Publication year
2020
Publication date
2020
Publisher
Springer Nature B.V.
e-ISSN
20458118
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2424803424
Copyright
© 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.