Full text

Turn on search term navigation

© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Non-contact health care monitoring is a unique feature in the emerging 5G networks that is achieved by exploiting artificial intelligence (AI). The ratio of the number of health care problems and patients is increasing exponentially and creating burgeoning data. The integration of AI and Internet of things (IoT) systems enables us to increase the huge volume of data to be generated. The approach by which AI is applied to the IoT systems enhances the intelligence of the health care system. In post-surgery monitoring of the patient, timely consultation is essential before further loss. Unfortunately, even after the advice of the doctor to the patient, he/she may forget to perform the activity in the correct way, which may lead to complications in recovery. In this research, the idea is to design a non-contact sensing testbed using AI for the classification of post-surgery activities. Universal software-defined radio peripheral (USRP) is utilized to collect the data of spinal cord operated patients during weight lifting activity. The wireless channel state information (WCSI) is extracted by using orthogonal frequency division multiplexing (OFDM) technique. AI applies machine learning to classify the correct and wrong way of weight lifting activity that was considered for experimental analysis. The accuracy achieved by the proposed testbed by using a fine K-nearest neighbor (FKNN) algorithm is 99.6%.

Details

Title
Non-Contact Sensing Testbed for Post-Surgery Monitoring by Exploiting Artificial-Intelligence
Author
Mohammed Ali Mohammed Al-hababi; Muhammad Bilal Khan; Al-Turjman, Fadi  VIAFID ORCID Logo  ; Zhao, Nan; Yang, Xiaodong
First page
4886
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2425865733
Copyright
© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.