Full Text

Turn on search term navigation

© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In this paper, the reliability of a k-component system, in which all components are subject to common stress, is considered. The multicomponent system will continue to survive if at least s out of k components’ strength exceed the common stress. The system reliability is investigated by utilizing the maximum likelihood estimator based on progressively type II censored samples from generalized Pareto distributions. The confidence interval of the system reliability can be obtained by using asymptotic normality with Fisher information matrix or bootstrap method approximation. An intensive simulation study is conducted to evaluate the performance of maximum likelihood estimators of the model parameters and system reliability for a variety of cases. For the confidence interval of the system reliability, simulation results indicate the bootstrap method approximation outperforms over the asymptotic normality approximation in terms of coverage probability.

Details

Title
Reliability Inference for the Multicomponent System Based on Progressively Type II Censored Samples from Generalized Pareto Distributions
Author
Sauer, Lauren; Lio, Yuhlong; Tsai, Tzong-Ru  VIAFID ORCID Logo 
First page
1176
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
22277390
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2425923552
Copyright
© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.