Full text

Turn on search term navigation

© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Developing precision medicine is a major trend in clinical oncology. The main adverse effects of ifosfamide, actinomycin D and vincristine (IVA) treatment for rhabdomyosarcoma are haematological toxicities such as neutropenia or thrombocytopenia. The severity of these effects vary among patients but their dynamic profiles are similar. A non-empirical adjustment of the chemotherapy dose to avoid severe toxicities could help secure the treatment administration. Twenty-four patients with rhabdomyosarcoma treated with IVA chemotherapy courses were selected. Before and during each cycle, routine multiple blood cell counts were performed allowing for a dynamic study of the haematological toxicities. We developed a machine learning analysis using a gradient boosting regression technique to forecast the ifosfamide induced haematological toxicities as a function of neutrophils and platelets initial levels and the initial ifosfamide dose. To validate models’ accuracy, predicted and observed neutrophils and platelets levels were compared. The model was able to reproduce the dynamic profiles of the haematological toxicities. Among all cycles, the mean absolute errors between predicted and observed neutrophils and platelets levels were 1.0 and 72.8 G/L, respectively. Adjusting a patient’s ifosfamide dose based upon the predicted haematological toxicity levels at the end of a treatment cycle could enable tailored treatment.

Details

Title
Machine Learning Approach to Forecast Chemotherapy-Induced Haematological Toxicities in Patients with Rhabdomyosarcoma
Author
Cuplov, Vesna  VIAFID ORCID Logo  ; Nicolas, André  VIAFID ORCID Logo 
First page
1944
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
20726694
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2425955041
Copyright
© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.