Full Text

Turn on search term navigation

© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This study aimed to assess how to enhance the value of 18F-Fluorodeoxyglucose (FDG) PET/CTs for glioma grading and better delineation of the tumor boundary by glucose loading. In mouse models of brain tumor using U87MG cells, 18F-FDG-PET images were obtained after fasting and after glucose loading. There was a significant difference in the tumor-to-normal cortex-uptake ratio (TNR) between the fasting and glucose-loading scans. 14C-2-Deoxy-D-glucose (14C-DG) uptake was measured in vitro using U87MG, U373MG and primary neurons cultured with different concentrations of glucose. The tumor-to-neuron ratio of 14C-DG uptake increased with up to 10 mM of glucose. Finally, 10 low-grade and 17 high-grade glioma patients underwent fasting and glucose loading 18F-FDG PET/CT and the TNR was compared between scans. The effect of glucose loading was significant in high-grade but not in low-grade gliomas. The receiver operating characteristic curve analyses with a cut-off TNR of 0.81 showed a higher area under the curve after glucose loading than fasting for differentiating low-grade versus high-grade gliomas. In addition, the glucose loading PET/CT was more useful than the fasting PET/CT for the discrimination of oligodendrogliomas from IDH-wildtype glioblastomas. Glucose loading resulted in a greater reduction in 18F-FDG uptake in the normal cortex than in tumors, which increases the usefulness of 18F-FDG PET/CT for grading.

Details

Title
Glucose Loading Enhances the Value of 18F-FDG PET/CT for the Characterization and Delineation of Cerebral Gliomas
Author
Kim, Dongwoo; Hae Young Ko; Lee, Sangwon; Yong-ho, Lee  VIAFID ORCID Logo  ; Ryu, Sujin; Seon Yoo Kim; Chung, Jee-in; Misu, Lee; Ju Hyung Moon  VIAFID ORCID Logo  ; Chang, Jong Hee  VIAFID ORCID Logo  ; Yun, Mijin
First page
1977
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
20726694
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2426832390
Copyright
© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.