Full text

Turn on search term navigation

Copyright © 2020 Gang Luo et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0/

Abstract

The high bypass ratio turbofan engine’s load-carrying structure transient response during bird ingestion was analyzed in accordance with the engine bird ingestion certification regulations, the principles of structural safety assessment were represented, and the structural safety analysis and assessment method of Turbo-Fan engine during bird ingestion were proposed. A high bypass ratio turbofan engine’s FEM was established and verified the rationality when its’ operation. Large bird ingestion into an engine’s procedure was conducted, the dynamic responses of key components on engine’s load-carrying structures during the bird ingestion were discussed, and the safety assessment consequence was obtained. We draw a conclusion that the relevant analysis/simulation data could be submitted to engine certification administration as key documents, the structural safety analysis and assessment method of turbofan engine due to bird ingestion could be applied as analysis and prediction work in the engine bird ingestion certification.

Details

Title
Transient Analysis and Safety Assessment of Turbofan Engine Structures during Bird Ingestion
Author
Luo, Gang 1 ; Ma, Chi 1 ; Chen, Wei 1   VIAFID ORCID Logo  ; Liu, Lulu 1 ; Zhao, Zhenhua 1 

 College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China; Aero-Engine Thermal Environment and Structure Key Laboratory of Ministry of Industry and Information Technology, Nanjing 210016, China 
Editor
Zhiguang Song
Publication year
2020
Publication date
2020
Publisher
John Wiley & Sons, Inc.
ISSN
16875966
e-ISSN
16875974
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2427226828
Copyright
Copyright © 2020 Gang Luo et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0/