It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background and Aim: Mycoplasma gallisepticum (MG) and Mycoplasma synoviae (MS) are the most significant pathogens of avian mycoplasmosis. This study aimed to isolate and identify MG and MS from chickens and detect the various virulence genes in the isolates. Moreover, the efficacies of different antibiotics were tested to identify suitable treatment regimens.
Materials and Methods: We isolated MG and MS from 487 chicken samples of different ages located in different Governorates in Egypt using conventional isolation methods. The isolates were characterized by polymerase chain reaction (PCR) and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and then tested for antibiotic sensitivity by the minimum inhibitory concentration (MIC) method.
Results: The prevalence of MG among the isolates was 9.85%, with the highest percentage isolated from air sacs, while the prevalence of MS among the isolates was 1.6%. Moreover, the highest levels of the prevalence of both MG and MS were during the winter and autumn sampling, while the lowest levels were in the summer and spring. Following the 16S rRNA-based detection of Mycoplasma isolates, 14 MG and 5 MS isolates were identified by different PCR-based detection methods for various virulence genes. Nine MG isolates contain the mgc2 gene, six MG isolates contain the gapA gene, and three MS isolates contain the vlhA gene. We validated a duplex PCR method for the simultaneous identification of MG and MS, based on 100% of the MG and MS isolates generating common bands at 55 and 17 kDa, respectively. The MIC method identified tiamulin and spiramycin as the antibiotics of choice for the treatment of MG and MS infections, respectively.
Conclusion: For more precise diagnosis of Mycoplasma infections in chicken flocks, conventional isolation methods must be confirmed by PCR. SDS-PAGE analysis helps in epidemiological studies and vaccine preparation. The MIC method can be used to help develop therapies to control avian mycoplasmosis infections.
------------
------------
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer