It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
This study determined the heat, flow, and electrical power values of and automotive thermoelectric generation system integrated in the exhaust system of an internal combustion gasoline engine. The combustion analyses of the engine integrated with and without automotive thermoelectric generation were carried out. The 20 thermoelectric modules were placed on the rectangular structure which was made of the aluminum 6061 material. The thermoelectric modules were electrically connected to each other in series. The gasoline engine was operated at full load at 1250, 1750, and 2250 rpm, and the electrical energy generated by the automotive thermoelectric generation system was calculated. At the same time, the heat and flow analyses of the automotive thermoelectric generation system were performed using the ANSYS FLUENT commercial software.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer