Abstract

Packing configuration is widely used in chemical industries such as chemical re-action and chromatograph where the flow distribution has a significant effect on the performance of heat and mass transfer. In the present paper, numerical simulation is carried out to investigate the fluid-flow in three 2-D array configurations including in-line array, staggered array and hexagonal array. Meanwhile, a simplified equivalent circuit network model based on the Voronoi tessellation is proposed to simulate the flow models. It is found that firstly, the local Reynolds number could be used as a criterion to determine the flow regime. Flow with maximum local Reynolds number less than 40 could be regarded as Darcy flow. Secondly, the flow pattern can be well represented by the network model in the range of Darcy flow with the determination method of hydraulic resistance pro-posed in the present paper.

Details

Title
Numerical simulation and circuit network modelling of flow distributions in 2-D array configurations
Author
Wang, Jingyu; Yang, Jian; Long, Li; Qian, Pei; Wang, Qiuwang
Pages
1987-1998
Section
Selected Papers: Selected papers from 12th Conference on Sustainable Development of Energy, Water, and Environment Systems
Publication year
2018
Publication date
2018
Publisher
Society of Thermal Engineers of Serbia
ISSN
0354-9836
e-ISSN
2334-7163
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2429087759
Copyright
© 2018. This work is licensed under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.