Abstract

Similar to Casimir force, nanofibers have a potential that attracts water molecules, while the porosity of the nanofiber mat produces a repelling force. Wetting property of a nanofiber mat is a result of combination of the forces and gravity. A new concept, the geometric potential or the boundary-induced force, is introduced to elucidate the basic property of wetting. Various nanofiber mats with different fiber morphologies are fabricated by the bubble electrospinning. The paper concludes that superhydrophobic properties of nanofiber mat depends upon mainly fiber morphology and porous structure of the mat, hydrophilic properties of ZnO nanorods will not affect the water contact angle much.

Details

Title
Geometric potential: An explanation of nanofiber’s wettability
Author
Liu, Peng; Ji-Huan He
Pages
33-38
Section
Part one: Mathematical Models for Thermal Science
Publication year
2018
Publication date
2018
Publisher
Society of Thermal Engineers of Serbia
ISSN
0354-9836
e-ISSN
2334-7163
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2429089754
Copyright
© 2018. This work is licensed under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.