Abstract

Finding the mode, in which two component laser Doppler velocimetry can be applied to flows confined in cylindrical tubes or vessels, was the aim of this study. We have identified principle issues that influence the propagation of laser beams in laser Doppler velocimetry system, applied to flow confined in cylindrical tube. Among them, the most important are influences of fluid and wall refractive indices, wall thickness and internal radius ratio and beam intersection angle. In analysis of the degrees of these influences, we have applied mathematical model, based on geometrical optics. The separation of measurement volumes, that measure different velocity components, has been recognized as the main drawback. To overcome this, we propose a lens with dual focal length – primary focal length for the measurement of one velocity component and secondary focal length for the measurement of the other velocity component. We present here the procedure for calculating the optimal value of secondary focal length, depending on experimental set-up parameters. The mathematical simulation of the application of the dual focal length lens, for chosen cases presented here, confirmed the accuracy of the proposed procedure.

Details

Title
Laser doppler velocimetry and confined flows
Author
Ilić, Jelena T; Ristić, Slavica S; Srećković, Milesa Ž
Pages
S825-S836
Section
Original scientific papers: Papers presented at the Turbulence Workshop - International Symposium, held at the University of Belgrade, Faculty of Mechanical Engineering from August 31 to September 2, 2015
Publication year
2017
Publication date
2017
Publisher
Society of Thermal Engineers of Serbia
ISSN
0354-9836
e-ISSN
2334-7163
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2429090761
Copyright
© 2017. This work is licensed under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.