It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
High-entropy ceramics attract more and more attention in recent years. However, mechanical properties especially strength and fracture toughness for high-entropy ceramics and their composites have not been comprehensively reported. In this work, high-entropy (Ti0.2Zr0.2Hf0.2Nb0.2Ta 0.2)B2 (HEB) monolithic and its composite containing 20 vol% SiC (HEB–20SiC) are prepared by hot pressing. The addition of SiC not only accelerates the densification process but also refines the microstructure of HEB, resulting in improved mechanical properties. The obtained dense HEB and HEB–20SiC ceramics hot pressed at 1800 ℃ exhibit four-point flexural strength of 339±17 MPa and 447±45 MPa, and fracture toughness of 3.81±0.40 MPa·m1/2 and 4.85±0.33 MPa·m1/2 measured by single-edge notched beam (SENB) technique. Crack deflection and branching by SiC particles is considered to be the main toughening mechanisms for the HEB–20SiC composite. The hardness Hv0.2 of the sintered HEB and HEB–20SiC ceramics is 23.7±0.7 GPa and 24.8±1.2 GPa, respectively. With the increase of indentation load, the hardness of the sintered ceramics decreases rapidly until the load reaches about 49 N, due to the indentation size effect. Based on the current experimental investigation it can be seen that the room temperature bending strength and fracture toughness of the high-entropy diboride ceramics are within ranges commonly observed in structure ceramics.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Donghua University, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, College of Sciences, Institute of Functional Materials, Shanghai, China (GRID:grid.255169.c) (ISNI:0000 0000 9141 4786)