It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Pollen has various effects on human health and the environment. To understand phenomena behind atmospheric pollen transport and hence improve pollen forecasts, vertically resolved optical properties and geometrical characteristics of the pollen distribution need to be studied. Lidar measurements and especially the particle depolarization ratio have been found to be an excellent tool to track pollen grains. In this study we present first results of atmospheric pollen characterization based on a 11 days period of birch and spruce pollination events.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer